
Shape of Ideas : Problem Set 4

MATHEMATICS CLUB IITM
ANANTH MADHAV V.

• The solutions to the questions in Problem Set 4 are given in this file.

• Feel free to reach out to us for doubts! Contact information of the problem set creator:
Ananth Madhav: +91 88384 53586

Solutions
1. For the below graph, find the:

(a) edge connectivity

(b) vertex connectivity

Solution:

(a) The edge connectivity is 2, as shown below: (in blue)
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(b) The vertex connectivity is also 2, as shown below: (in blue)

2. Let G be a connected undirected graph with exactly four vertices of odd degree.

(a) Does an Eulerian circuit exist in G? If so, give an example. If not, why?

(b) Is it always possible to partition the edge set of such a graph into exactly two edge-disjoint trails? If
yes, give an example.

Solution:

(a) No. A connected and undirected graph has an Eulerian circuit only if all its vertices have even
degree.

(b) Yes. Any graph with exactly 2k vertices of odd degree can be partitioned into k edge-disjoint
trails. In the above case, k = 2. An example depiction of this is as follows:

3. Given a simple undirected graph G with n vertices, suppose that for every pair of non-adjacent vertices u
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and v, deg(u) + deg(v) ≥ n. Prove that G contains a Hamiltonian cycle.

Solution:

Proof by contradiction:

• Assume G is not Hamiltonian. Consider a longest possible cycle C in G.

• If C is not Hamiltonian, there exists a vertex x not on C.

• Since C is maximal, x cannot be inserted into C to form a longer cycle, which leads to a
contradiction using the degree condition.

• Specifically, for any two non-adjacent vertices u, v on C, the sum of their degrees is at least n,
which forces the existence of edges that allow extending C, contradicting maximality.

• Therefore, G must be Hamiltonian.

4. Consider a bipartite graph H with bipartition (A,B), |A| = |B| = n, and suppose every vertex has degree
at least n/2. Does H always contain

(i) a Hamiltonian path?

(ii) a Hamiltonian cycle? Justify your answer.

Solution:

(i) No.
The following is a counterexample:

• Partition A and B each into two equal halves: A = A1 ∪ A2, B = B1 ∪ B2, with |A1| =
|A2| = |B1| = |B2| = n/2 (assuming n is even).

• Connect every vertex in A1 to every vertex in B1, and every vertex in A2 to every vertex in
B2.

• Each vertex has degree n/2, but the graph is disconnected, so no Hamiltonian path exists.

(ii) No. The above counterexample applies here too—without a Hamiltonian path itself, there exists
no question of a Hamiltonian cycle.

5. Let n ≥ 4 be an integer, and let T be a labeled tree on the vertex set 1, 2,…, n.

(a) Let d ≥ 2. How many labeled trees are there on n vertices in which a fixed vertex, say vertex 1, has
degree exactly d? Provide an explicit formula in terms of n and d.

(b) For n = 7, how many labeled trees are there in which both vertex 1 and vertex 2 have degree 3?

Solution:

(a) If a vertex has degree d, it means that it must appear exactly d − 1 times in the Prüfer code.
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For an n-vertex tree, the Prüfer code has n− 2 elements, of which d− 1 must be the vertex of
interest i.e. vertex 1.

• First, we choose d− 1 of the n− 2 positions to assign to vertex 1 i.e.
(
n− 2

d− 1

)
• Then, we fill the remaining n−d−1 positions with any of the n−1 labels except 1: for each,
n−1 choices, and n− d− 1 times i.e. (n− 1)(n−d−1).

Hence, the total number of such trees will be
(
n− 2

d− 1

)
· (n− 1)(n−d−1) .

(b) If n = 7, and both vertex 1 and vertex 2 have degree 3, then the Prüfer code will be of length 5
and feature:

• 1 and 2 twice each; and

• any element from the set {3, 4, 5, 6, 7} once.

Hence, we have:

• Two positions (out of 5) for 1:
(
5

2

)
= 10.

• Two positions (out of remaining 3) for 2:
(
3

2

)
= 3.

• One position (only remaining), to be filled by one of {3, 4, 5, 6, 7}:
(
5

1

)
= 5.

Hence, the total number of such trees will be 10 · 3 · 5 = 150 .

6. Find the minimum spanning tree of the following graphs, using one of the major algorithms. Explain the
steps clearly.
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(a)

(b)
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Solution:

Any of the major algorithms can be utilized to find the MST.

(a)

(b)

7. Determine the critical 3-chromatic graphs. Give your reasoning for your answer.
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Solution:

The only graphs which are 3-critical (in the sense of vertex colorings) are cycles of odd length: C2n+1

for n ≥ 1 (i.e., cycles with 3, 5, 7, etc., vertices).
The reasoning for this is as follows:

• If a graph G is 3-critical, it is not 2-colorable and thus contains an odd cycle.

• Let C be the smallest odd cycle in G. The subgraph induced by C must have chromatic number
3. If G contained more than just C, then C would be a proper induced subgraph with the same
chromatic number as G, contradicting criticality.

• Therefore, G must be exactly the odd cycle C.

8. Prove the recursive bound of Ramsey numbers i.e. R(s, t) ≤ R(s− 1, t) +R(s, t− 1).

Solution:

• Base cases: R(s, 1) = R(1, t) = 1 and R(s, 2) = s, R(2, t) = t.

• Suppose the recursive bound holds for smaller values of s and t. Let R(s−1, t)+R(s, t−1) = N .
We consider any possible red/blue coloring of the edges of the complete graph KN .

• Pick any vertex v in KN . v is connected by edges to all other N−1 vertices. Each of these edges
can be red or blue. Let’s partition the remaining vertices:

– Red-neighbours : Vertices joined to v with a red edge. Let the set be A.

– Blue-neighbours : Vertices joined to v with a blue edge. Let the set be B.

– Note: |A|+ |B| = N−1.

• Given the choice of N , it must be that:

– Either |A| ≥ R(s−1, t); or

– |B| ≥ R(s, t−1).

This is because |A|+ |B| = N −1 = R(s−1, t)+R(s, t−1)−1. If both sets were smaller than their
respective Ramsey numbers, their combined size would be less than N−1, which is impossible by
the pigeonhole principle.

• By induction:

– Case 1:|A| ≥ R(s− 1, t)

Consider the subgraph induced by A. By the definition of R(s− 1, t), the red-blue coloring
of A’s edges must contain either:

∗ a red Ks−1: adding v (which is connected to all of A in red) gives a red Ks,

∗ or a blue Kt: we are done.
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– Case 2:|B| ≥ R(s, t− 1)

Now consider the subgraph induced by B. By the definition of R(s, t − 1), the red-blue
coloring of B’s edges must contain either:

∗ a blue Kt−1: adding v (which is connected to all of B in blue) gives a blue Kt,

∗ or a red Ks: we are done.

In either case, the complete graph on N = R(s− 1, t) +R(s, t− 1) vertices must contain either a
red Ks or a blue Kt. Thus:R(s, t) ≤ R(s− 1, t) +R(s, t− 1)

9. How does Euler’s formula constrain the possible structures of planar graphs, and what does it reveal about
the maximum number of edges such graphs can have in relation to their number of vertices?

Solution:

Euler’s formula for connected planar graphs is: v − e+ f = 2 where v is the number of vertices, e is
the number of edges and f is the number of faces. This imposes limits on the construction of planar
graphs:

• In any planar embedding, each edge borders two faces, and each face is bounded by at least three
edges (for simple graphs with v ≥ 3).

• The formula shows that planar graphs cannot be arbitrarily dense; there is an upper limit on the
number of edges for a given number of vertices. This upper limit is shown below:

– Each edge is shared by two faces, so 2e ≥ 3f .

– Substitute f from Euler’s formula: f = 2−v + e.

– Plug into the inequality: 2e ≥ 3(2−v + e).

Solving for e:
2e ≥ 6− 3v + 3e

=⇒ 2e− 3e ≥ 6− 3v

=⇒ −e ≥ 6− 3v

=⇒ e ≤ 3v − 6

Thus, we conclude that for any simple, connected planar graph with v ≥ 3, the number of edges
e is bounded by the result e ≤ 3v−6 .
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