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Mathematics Guild

Solutions to Problem Set - 4

Challenge posed on: 15/07/2025 Challenge conquered by: 21/07/2025

1 Overview

• Topics focused: – Linear Algebra

– Abstract Algebra

• Challengers: – Hafiz Rahman Elikkottil

– Ayush Gangal

– Srikar JV

• Difficulty level is as follows:

– Cyan :- Easy to moderate

– Blue :- Moderate to Hard

– Red :- Hard to Very Hard

• Happy solving :)

2 Problems

1. The Odd Resultant Mystery We give a proof by induction on n.

Base Case (n = 1):

For n = 1, we have a single unit vector. The magnitude of the resultant is 1, satisfying the statement.

Inductive Step:

Assume the statement holds for some odd n = 2k − 1; that is, for any configuration of 2k − 1 unit
vectors on one side of the x-axis, the magnitude of their sum is at least 1.

We must show that it holds for n = 2k + 1 as well.

Let v⃗1, v⃗2, . . . , v⃗2k+1 be unit vectors in the plane, all lying in the same open half-plane defined by the
x-axis. Let θi be the angle that v⃗i makes with the positive x-axis, with

0 < θ1 ≤ θ2 ≤ · · · ≤ θ2k+1 < π.

Consider the sum of the vectors:
S⃗ = v⃗2 + v⃗3 + · · ·+ v⃗2k

By the induction hypothesis, |S⃗| ≥ 1. Now, consider adding two more unit vectors v⃗1 and v⃗2k+1 (the
remaining two vectors):

R⃗ = S⃗ + v⃗1 + v⃗2k+1

If we show |R⃗| ≥ 1, then we are done.

Since v⃗1 and v⃗2k+1 are unit vectors, the direction of their sum v⃗1 + v⃗2k+1 will be along the angle
θ1+θ2k+1

2
with 0 < θ1 ≤ θ2k+1 < π.

Let β be the angle that S⃗ makes with the +ve x-axis (θ1 ≤ β ≤ θ2k+1). We can show that the angle

between S⃗ and v⃗1 + v⃗2k+1 is at most π
2
.
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By the general fact that if the angle between two vectors −→u and −→v is at most π
2
, then

|−→u +−→v | ≥ max {|−→u | , |−→v |} ,

we have ∣∣∣R⃗∣∣∣ = ∣∣∣S⃗ + v⃗1 + v⃗2k+1

∣∣∣ = ∣∣∣S⃗ + (v⃗1 + v⃗2k+1)
∣∣∣ ≥ max

{
|v⃗1 + v⃗2k+1| ,

∣∣∣S⃗∣∣∣} ≥
∣∣∣S⃗∣∣∣ ≥ 1,

as required.

Thus, for all odd n, the magnitude of the sum of n unit vectors lying on the same side of the x-axis
is at least 1.

2. One small step on min, One giant fall on max Let v1, . . . , vn denote the rows of A. Perform
the row operations:

vn → vn − vn−1, vn−1 → vn−1 − vn−2, . . . , v2 → v2 − v1.

Since for each k ≥ 2,

(vk − vk−1)k =
1

k
− 1

k − 1
,

the resulting matrix is upper-triangular with diagonal entries:

1,
1

2
− 1,

1

3
− 1

2
, . . . ,

1

n
− 1

n− 1
.

Hence,

detA =
n∏

k=2

(1
k
− 1

k − 1

)
=

n∏
k=2

(
− 1

k(k − 1)

)
= (−1)n−1 1

(n− 1)!n!
.

Perform the column operations:

Ck → Ck − Ck+1, k = 1, 2, . . . , n− 1

Then, for each 1 ≤ k ≤ n− 1,

(Ck)i =
1

max(i, k)
− 1

max(i, k + 1)
,

which vanishes for all i > k. Thus, the new matrix is upper-triangular with diagonal entries:

dk =
1

k
− 1

k + 1
(1 ≤ k < n), dn =

1

n

Therefore,

detA =
(n−1∏
k=1

(
1
k
− 1

k+1

))
· 1
n
=

n−1∏
k=1

1

k(k + 1)
· 1

n
=

1

(n!)2
.

Note that exactly 2k − 1 pairs (i, j) satisfy max(i, j) = k. Therefore,

Sn =
n∑

k=1

(2k − 1)
1

k
= 2

n∑
k=1

1 −
n∑

k=1

1

k
= 2n−Hn,

where Hn =
∑n

k=1
1
k
is the nth harmonic number.
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3. The Grand Eigenvalue Challenge Let the table be represented by a real symmetric 2025×2025
matrix A = (aij) satisfying |aij − 2025| ≤ 1 for every 1 ≤ i, j ≤ 2025. Denote the largest eigenvalue
of A by λ(A).

Spectral Theorem for Real Symmetric Matrices-

Let A ∈ Rn×n be real and symmetric. Then:

(a) The eigenvalues of A are real.

Proof. Let λ ∈ C be an eigenvalue of A, and let x ∈ Cn be a nonzero eigenvector such that
Ax = λx. Then

x∗Ax = x∗(λx) = λx∗x.

Since A is symmetric, x∗Ax = (Ax)∗x = (λx)∗x = λx∗x. Hence,

λx∗x = λx∗x.

Since x ̸= 0, we have x∗x > 0, so λ = λ, i.e., λ is real.

(b) A is orthogonally diagonalizable.

(c) There is an orthonormal basis of Rn consisting of eigenvectors of A.

Theorem: A matrix A ∈ Fn×n is diagonalizable if and only if there exists a basis of Fn×1

consisting of eigenvectors of A.

Consider a symmetric matrix A ∈ Rn×n, and let λ1 and λ2 be distinct eigenvalues of A with
corresponding eigenvectors v⃗1 and v⃗2, respectively. We aim to show that v⃗1 and v⃗2 are orthog-
onal.

From the definition of eigenvectors and eigenvalues, we have:

Av⃗1 = λ1v⃗1, Av⃗2 = λ2v⃗2.

Multiplying both sides of the first equation on the left by v⃗⊤2 , and both sides of the second
equation on the left by v⃗⊤1 , we get:

v⃗⊤2 Av⃗1 = λ1v⃗
⊤
2 v⃗1, v⃗⊤1 Av⃗2 = λ2v⃗

⊤
1 v⃗2.

Note that the quantity v⃗⊤1 Av⃗2 is a scalar, so:

v⃗⊤1 Av⃗2 = (v⃗⊤1 Av⃗2)
⊤ = v⃗⊤2 A

⊤v⃗1.

Since A is symmetric, A⊤ = A, and thus:

v⃗⊤1 Av⃗2 = v⃗⊤2 Av⃗1.

Therefore, we can equate the right-hand sides of the two earlier equations:

λ1v⃗
⊤
2 v⃗1 = λ2v⃗

⊤
1 v⃗2.

But v⃗⊤2 v⃗1 = v⃗⊤1 v⃗2, so we get:
λ1v⃗

⊤
1 v⃗2 = λ2v⃗

⊤
1 v⃗2.

Since λ1 ̸= λ2, it follows that:
v⃗⊤1 v⃗2 = 0,

which shows that v⃗1 and v⃗2 are orthogonal.

The set of n eigenvectors can be chosen to be orthogonal (as shown above, at least across
distinct eigenspaces).

For eigenvectors corresponding to the same eigenvalue (i.e., within the same eigenspace), we
can apply the Gram–Schmidt process to obtain an orthonormal basis within each eigenspace.

Therefore, the entire space Rn has an orthonormal basis consisting of eigenvectors of the matrix.
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Now, let 1 =
√

1
2025

[1, 1, . . . , 1]T ∈ R2025. The scaling is just so that ⟨1,1⟩ = 1.

Let n = 2025

From (c), we can say that any vector x ∈ Rn can be written as a linear combination of the eigenvectors
of a real symmetric matrix A:

x =
n∑

i=1

αivi, where αi = ⟨x, vi⟩ = vTi x.

Let’s apply this to the specific vector:

1 =
n∑

i=1

αivi.

Since the eigenvectors {vi}ni=1 form an orthonormal basis, we can compute each coefficient using the
inner product:

αi = ⟨1, vi⟩ = vTi 1.

Now consider the squared norm of 1. For any x ∈ Rn, we have:

∥x∥2 = ⟨x, x⟩.

So in our case:

∥1∥2 =

〈
n∑

i=1

αivi,
n∑

j=1

αjvj

〉
.

On simplifying it,

∥1∥2 =
n∑

i=1

n∑
j=1

αiαj⟨vi, vj⟩.

Since the vi’s are orthonormal, we have:

⟨vi, vj⟩ =

{
1 if i = j,

0 if i ̸= j.

Therefore, the double sum simplifies to:

∥1∥2 =
n∑

i=1

α2
i = 1

Now, we can write ∑
1≤i,j≤n aij

2025
= ⟨A1,1⟩ = 1TA1

Let’s compute the expression 1TA1.

From the eigenvector decomposition, we can write:

1 =
n∑

i=1

αivi, where each αi = vTi 1.
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Then,

A1 = A

(
n∑

i=1

αivi

)
=

n∑
i=1

αiAvi =
n∑

i=1

αiλivi,

Now we compute:

1TA1 =

(
n∑

i=1

αivi

)T ( n∑
j=1

αjλjvj

)
.

On simplifying it,

1TA1 =
n∑

i=1

n∑
j=1

αiαjλj(v
T
i vj).

Since the eigenvectors {vi} form an orthonormal basis, we have:

vTi vj =

{
1 if i = j,

0 if i ̸= j.

So the double sum reduces to:

1TA1 =
n∑

i=1

α2
iλi.

Now, as λi ≤ λ(A), we can write:

n∑
i=1

α2
iλi ≤

n∑
i=1

α2
iλ(A) = λ(A)

n∑
i=1

α2
i = λ(A)

Thus, ∑
1≤i,j≤n aij

2025
= ⟨A1,1⟩ ≤ λ(A).

As, 2024× 2025 ≤
∑

1≤i,j≤n aij

2025
, we have λ(A) ≥ 2025× 2024

Thus,

λ(A) ≥ 2025× 2024

Let there be a unit eigenvector x ∈ Rn such that

Ax = λ(A) · x, and ∥x∥2 = xTx = 1

Therefore,
xTAx = xT (λ(A) · x) = λ(A) · xTx = λ(A).

Expanding xTAx as
∑n

i=1

∑n
j=1 xiaijxj, we can say:

λ(A) =
n∑

i=1

n∑
j=1

xiaijxj ≤ 2026×
n∑

i=1

n∑
j=1

xixj = 2026× (
n∑

i=1

xi)
2

On applying Cauchy-Schwarz inequality,
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(
n∑

i=1

xi

)2

≤ n ·
n∑

i=1

x2
i = n · ∥x∥2 = n.

(
n∑

i=1

xi

)2

≤ n.

Thus,

λ(A) ≤ 2026× 2025

Both of these bounds are achievable by setting the matrix as 2024J or 2026J respectively, where J
is the all-one matrix in R2025×2025 as we have eigenvector 1.

Conclusion:

(a) The highest possible value of the Grand Eigenvalue is 2025× 2026 = 4,102, 650 .

(b) The lowest possible value of the Grand Eigenvalue is 2025× 2024 = 4,098, 600 .

4. Tired... here you go with the easy one Let G be a finite group under the operation ∗. Fix an
element a ∈ G. Consider the sequence

a, a ∗ a, a ∗ a ∗ a, . . . , a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸
k times

, . . .

As G is finite and the sequence above consists of elements in G, then, some elements in this sequence
must repeat. That is, there exist integers m < n such that

a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸
n times

= a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸
m times

Define b = a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸
m times

, so the above reads:

b = b ∗ a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸
n−m times

.

Multiply both sides on the left by the inverse of b (since every element in a group has an inverse):

e = a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸
n−m times

.

Thus, for k = n−m > 0, we have a composed with itself k times equals the identity. Therefore, for
every a ∈ G, there exists a positive integer n such that

a∗n = a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸
n times

= e

(where a∗n denotes a operated with itself n times).

5. Ring-A-Ring-A-Roses, Pocket full of zeroes

S = a1 + a2 + · · ·+ an = 0
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For each integer k ≥ 1,
Sk = (a1 + a2 + · · ·+ an)

k = 0

Since each a2i = ai, every monomial collapses either to a single ai or to a mixed product aiaj (i ̸= j).
Comparing coefficients yields:

n∑
i=1

aki =
n∑

i=1

ai = 0,
∑
i ̸=j

aiaj = 0, ∀ k ≥ 1,

so all power sums sk =
∑

i a
k
i vanish.

Consider the monic polynomial in D[t] with “roots” a1, . . . , an:

f(t) =
n∏

i=1

(t− ai) = tn − c1 t
n−1 + c2 t

n−2 − · · ·+ (−1)ncn

Newton’s identities

k ck =
k∑

i=1

(−1) i−1 c k−i si

imply inductively c1 = c2 = · · · = cn = 0, since each si = 0 and k ̸= 0 in D. Hence, f(t) = tn in D[t].

Fix any j. Dividing tn by the factor (t− aj) in D[t] leaves a constant remainder rj, but f(t) = tn is
divisible by (t− aj), so rj = 0. Substituting t = aj gives:

anj = 0

Since aj is idempotent,
aj = a2j = a3j = · · · = anj = 0

As j was arbitrary, all ai = 0.

6. Escaping the matrix? (The determinant can’t) By Hadamard’s inequality,

| detC|2 ≤
n∏

i=1

∥ci∥2 =
n∏

i=1

∥∥ai + εibi
∥∥2 = n∏

i=1

(
∥ai∥2 + 2εi⟨ai, bi⟩+ ∥bi∥2

)
Setting xi = ⟨ai, bi⟩, we get

| detC|2 ≤ 2n
n∏

i=1

(1 + εixi) = 2nA(ε, x, n),

where

A(ε, x, n) =
n∏

i=1

(1 + εixi), ε = (ε1, . . . , εn) ∈ {±1}n

We will show by induction on n that ∑
εi=±1

A(ε, x, n) = 2n

For n = 1, A(ε, x, 1) = 1 + ε1x1 and∑
ε1=±1

(1 + ε1x1) = (1 + x1) + (1− x1) = 2
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Assume the claim for n− 1. Then∑
εi=±1

A(ε, x, n) =
∑

εn=±1

(1 + εnxn)
∑

ε1,...,εn−1

A(ε, x, n− 1) = (1 + xn + 1− xn) 2
n−1 = 2n

Since there are 2n choices of ε, the average of A(ε, x, n) is 1. So, for some choice ε1, . . . , εn, we have
A(ε, x, n) ≤ 1. Hence,

| detC|2 ≤ 2n =⇒ | detC| ≤ 2n/2

7. This one looks odd

Tm =

(
xm − 1

2m− 1

)

⇒ (2m− 1)!× Tm = (x+m− 1)(x+m− 2) · · · (x−m+ 1) = x

m−1∏
i=1

(x2 − i2)

So Tm is an odd polynomial of degree 2m-1. Therefore, T1, T2, · · · , Tn span the same space as
x.x3, ...x2n−1 and any odd polynomial of degree ≤ 2n− 1 can be written as a linear combination of
these terms.

8. Invert it Let d(a, b) = 1 if b|a else 0. Consider the vector v(m) ϵ Rn.

v(m) =
[
d(m, 1) d(m, 2) · · · d(m,n)

]
We can see that the rows of M(n) are v(2), v(3), · · · , v(n+ 1).

Our proof depnds on the following result. If the prime factorisation of n+ 1 is pa11 pa22 · · · pakk , then∑
I

(−1)|I|v

(
n+ 1∏
i∈I pi

)
= (0, 0, . . . , 0),

where we are summing over all subsets of {1, 2, . . . , k} i.e., for all the numbers of n+1 that we get
by dividing it with its square free factors. |I| is the number of elements in I.

Proof. Let us consider the jth component of the left side of the equation, where 1 ≤ j ≤ n.

If n + 1 is not divisible by j, then the jth component of each term is 0. Hence, the jth component
of the left side of the equation is 0.

If n+ 1 is divisible by j, then we can write

n+ 1

j
= pb11 p

b2
2 · · · pbkk ,

where 0 ≤ bi ≤ ai for each i.

Let J = {1 ≤ i ≤ k | bi > 0}. Then the jth component of the left side of the equation is

∑
I

(−1)|I|d

(
n+ 1∏
i∈I pi

,
n+ 1

pb11 p
b2
2 · · · pbkk

)
=
∑
I

(−1)|I|d

(
pb11 p

b2
2 · · · pbkk ,

∏
i∈I

pi

)

=
∑
I⊆J

(−1)|I|d

(
pb11 p

b2
2 · · · pbkk ,

∏
i∈I

pi

)
=
∑
I⊆J

(−1)|I| = 0.

The first equality uses the fact that n+1
a

is divisible by n+1
b

if and only if b is divisible by a.
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The second and third equalities use the fact that d
(
pb11 p

b2
2 · · · pbkk ,

∏
i∈I pi

)
is equal to 1 if I ⊆ J , and

equal to 0 otherwise.

The final equality uses the fact that j ≤ n, so J ̸= ∅.
We now consider the two cases:

a) n+1 is not square free:
This implies that some combination of vectors v(2), v(3), · · · , v(n + 1) is equal to a zero vector. by
performing the above summation as a row operation on the nth row, we get all zeroes in that row.
Therefore the matrix is not invertible.

b) n+1 is square free: In this case, we get that some linear combination of v(1), v(2), v(3), · · · , v(n+1)
is equal to the zero vector. The problem here is that v(1) is not a row of the M(n). So if we perform
the above summation excluding the v(1) term on the nth row, we get ±v(1) as the last row, where
v(1) is just

[
1 0 · · · 0

]
. If we look at the cofactor matrix of the 1 in the last row, we can see that

it is a lower triangular matrix with leading diagonal elements all being 1. Therefore |M(n)| = ±1
and therefore it is invertible.
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