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Mathematics Guild

Solutions to Problem Set - 3

Challenge posed on: 08/07/2025 Challenge conquered by: 14/07/2025

1 Overview

• Topics focused: – Algebra

– Polynomials

– Functional Equations

• Challengers: – Raghav Iyengar

– V Sriram

– Arun Radhakrishnan

• Difficulty level is as follows:

– Cyan :- Easy to moderate

– Blue :- Moderate to Hard

– Red :- Hard to Very Hard

• Happy solving :)

2 Problems

1. Functional Inequality on Natural Numbers Let f : N → N satisfy

2n+ 2024 ≤ f
(
f(n)

)
+ f(n) ≤ 2n+ 2026 for every n ∈ N. (1)

1. Setting up the auxiliary sequences Fix an arbitrary n ∈ N and define

a0 = n, ak+1 = f(ak) (k ≥ 0),

together with the ”error” terms

ck = ak+1 − ak − 675 (k ≥ 0).

By construction ak+1 = ak + 675 + ck.

Insert these expressions into (1):

ak+2 + ak+1 =
(
ak + 1350 + ck + ck+1

)
+
(
ak + 675 + ck

)
= 2ak + 2025 + 2ck + ck+1.

Hence

2ak + 2024 ≤ 2ak + 2025 + 2ck + ck+1 ≤ 2ak + 2026 =⇒ −1 ≤ 2ck + ck+1 ≤ 1. (2)

2. A useful sign-growth dichotomy Rewrite (2) as

ck+1 ≤ 1− 2ck, ck+1 ≥ −1− 2ck. (3)

• If ck ≥ 1, then the first inequality in (3) forces ck+1 ≤ −1.

• If ck ≤ −1, the second inequality in (3) gives ck+1 ≥ 1.

Thus whenever ck ̸= 0 the signs of consecutive c-terms alternate and their absolute values never drop
below 1.

3. Assuming c0 ̸= 0
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Case A: c0 ≥ 1. We prove by induction that

c2k ≥ k + 1 (k ≥ 0). (4)

Base k = 0. c0 ≥ 1 = 0 + 1.
Induction step. Assume c2k ≥ k + 1.
From 2c2k + c2k+1 ≤ 1 we get c2k+1 ≤ 1− 2c2k ≤ −2k − 1.
Plugging this into −1 ≤ 2c2k+1 + c2k+2 yields c2k+2 ≥ −1− 2c2k+1 ≥ 4k + 1 ≥ k + 2 for every k ≥ 0.
Hence (4) is established.

With (4) we bound the original sequence. From

ak+1 = ak + 675 + ck, ak+2 = ak+1 + 675 + ck+1

we obtain
a2k+2 = a2k + 1350 + c2k + c2k+1.

Using c2k+1 ≤ 1− 2c2k we deduce

a2k+2 ≤ a2k + 1351− c2k ≤ a2k + 1350− k (by (4)). (5)

Iterating (5) gives

a2k ≤ a0 +
k−1∑
j=0

(1350− j) = a0 + 1350k − k(k − 1)

2
. (6)

The quadratic term −k(k − 1)/2 dominates the linear one, so (6) becomes negative for sufficiently
large k, contradicting a2k ∈ N. Thus c0 ̸≥ 1.

Case B: c0 ≤ −1. Now 2c0 + c1 ≥ −1 implies c1 ≥ 1.
Starting the previous argument at index 1 (i.e. with the pair c1, c2) again leads to a contradiction.

Therefore c0 = 0.

4. Concluding the form of f Because c0 = 0,

a1 = a0 + 675 =⇒ f(n) = n+ 675
(
n = a0

)
.

Finally,
f
(
f(n)

)
+ f(n) = (n+ 1350) + (n+ 675) = 2n+ 2025,

which indeed lies between 2n+ 2024 and 2n+ 2026. Hence

f(n) = n+ 675 for all n ∈ N

and the solution is unique.

2. Too cool to be in GP Let P (x) = a3x
3 + a2x

2 + a1x+ a0, where a3, a2, a1, a0 ∈ Z.
Assume that the roots of the polynomial form a geometric progression with ratio q, where |q| ̸= 1
and q ̸= 0.
Let the roots be a, aq, aq2, where a ∈ R and irrational.
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By Vieta’s formulas, the sum of the roots satisfies:

a+ aq + aq2 = a(1 + q + q2) = −a2
a3

and the sum of the products of the roots taken two at a time is:

a · aq + a · aq2 + aq · aq2 = a2q(1 + q + q2) =
a1
a3

Dividing the second equation by the first:

a2q(1 + q + q2)

a(1 + q + q2)
= aq =

a1
−a2

Hence,

aq =
a1
−a2

which is rational, since a1, a2 ∈ Z and a2 ̸= 0.
But this implies that one of the roots, aq, is rational, contradicting the assumption that all roots are
irrational.

Therefore, the roots of a cubic polynomial with integer coefficients cannot be three positive irrational
numbers in geometric progression.

3. This is more confusing than Pokemon XYZ Given: f : R → R

x(f(x+ y)− f(x− y))− y(f(x+ y) + f(x− y)) = 8xy(x4 − y4)

With, f(1) = 2025. The passkey on the first day of the month.

The key trick in this problem is that: if x and y are independent variables, then x + y and x - y are
also independent. That is, it is possible to choose any two real numbers a and b, with x + y = a
and x - y = b. So, put a = x + y, b = x - y and solve for f(a) and f(b) where a and b can be varied
independent of each other.

First we simplify the equation, grouping the f(x + y) and f(x - y) terms:

f(x+ y) ∗ (x− y)− f(x− y) ∗ (x+ y) = 8xy(x2 + y2)(x2 − y2)

= 8xy(x2 + y2)(x+ y)(x− y)

= 4xy ∗ (2x2 + 2y2) ∗ (x+ y)(x− y)

= [(x+ y)2 − (x− y)2] ∗ [(x+ y)2 + (x− y)2] ∗ (x+ y)(x− y)

Making the substituion: a = x+ y, b = x− y, we get:

bf(a)− af(b) = (a2 + b2) ∗ (a2 − b2) ∗ ab = ab ∗ (a4 − b4)

Dividing by ab, we get:

f(a)

a
− f(b)

b
= a4 − b4 ⇒ f(a)

a
− a4 =

f(b)

b
− b4 = c

for some constant c.

Thus, f(a) = a ∗ (c+ a4) = a5 + ca. Since f(1) = 2025, we get f(1) = 1 + c = 2025 ⇒ c = 2024.
Therefore, f(x) = x5 + 2024x.
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4. Even more confusing than Pokemon XYZ Given: f : R → R

f(xy + f(x)) + f(y) = xf(y) + f(x+ y)

for all real numbers x and y.

Let P (x, y) be the assertion f(xy + f(x)) + f(x+ y) = xf(y) + f(x+ y).
P (0, 0) =⇒ f(f(0)) + f(0) = 0 + f(0) =⇒ f(f(0)) = 0
P (0, 0), 0 =⇒ 2f(0) = f(0)2 and so f(0) ∈ {0, 2}

Case i: If f(0) = 2 and so f(2) = f(f(0)) = 0
P (x, 0) =⇒ f(f(x)) + 2 = 2x+ f(x) and so f(x) is injective.
For a rigorous proof: Assume f(a1) = f(a2) and put x = a1 and x = a2 in the above formula. It is
easily shown that a1 = a2
Note: This trick is very useful in functional equations - when you have a variable x outside the
functions and everything else inside the function calls.
If x ̸= 1,

P (x,
f(x)− x

1− x
) =⇒ f(x ∗ f(x)− x

1− x
+ f(x)) + f(

f(x)− x

1− x
) = xf(

f(x)− x

1− x
) + f(x+

f(x)− x

1− x
)

=⇒ f(
f(x)− x2

1− x
) + f(

f(x)− x

1− x
) = xf(

f(x)− x

1− x
) + f(

f(x)− x2

1− x
)

=⇒ f(
f(x)− x

1− x
) = xf(

f(x)− x

1− x
) =⇒ f(

f(x)− x

1− x
) = 0

We already know, 0 = f(2) and so, by injectivity, f(x)−x
1−x

= 2.
And so f(x) = 2− x ∀x ̸= 1.
For x = 1, we can show:

P (1, x) =⇒ f(x+ f(1)) = f(1 + x)

Again, via injectivity, x+ f(1) = x+ 1 =⇒ f(1) = 1 = 2− x.

And so S1 : f(x) = 2− x ∀x , which indeed fits.

Case ii: If f(0) = 0
If f(a) = f(b) = c, subtracting P (a, b) from P (b, a): we get c(a− b) = 0 and so f(a) = f(b) = 0 or
a = b. Equation (i).

P (x, 0) =⇒ f(f(x)) = f(x) and so f(x) = 0 or f(x) = x using eqn (i).

If f(1) = 0, P (1, x) =⇒ f(x) = f(1 + x).

And so S2 : f(x) = 0 ∀x , which indeed fits.

If f(1) = 1: claim that f(x) = x ∀x.
Suppose not, ∃k ̸= 0, f(k) ̸= k =⇒ f(k) = 0.

Then P (1− k, k) =⇒ f(k − k2 + f(1− k)) = 1 = f(1).
f(k − k2 + f(1− k)) = f(1) = 1 ̸= 0 =⇒ k − k2 + f(1− k) = 1, from eqn (i).

If f(1− k) = 0, we get k − k2 = 1 ⇒⇐.
If f(1− k) = 1− k, we get k − k2 + 1− k = 1 ⇒⇐, since k ̸= 0.
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Therefore, there is no k ̸= 0 such that f(k) = 0.
This means f(x) = x for all x ̸= 0.
Since f(0) = 0, we have f(x) = x for all x.

No such x and S3 : f(x) = x ∀x , which indeed fits.

5. Be real. Given: a0, a1, . . . , a100 are positive real numbers

Pk(x) = a100+kx
100 + 100a99+kx

99 + a98+kx
98 + a97+kx

97 + · · ·+ a2+kx
2 + a1+kx+ ak

where the indices are taken modulo 101

Let n = 50. For the sake of contradiction, assume that each of these polynomials has all real roots;
these roots must be negative. Let

−α1,k,−α2,k, . . . ,−α2n,k

be the roots of the polynomial

a2n+kx
2n + 2na2n−1+kx

2n−1 + a2n−2+kx
2n−2 + a2n−3+kx

2n−3 + · · ·+ a2+kx
2 + a1+kx+ ak

Indices are taken modulo 2n+ 1, so a2n+k = ak−1 and a2n−1+k = ak−2. Then

2n∑
j=1

αj,k = 2n ·
(
ak−2

ak−1

)
;

2n∏
j=1

αj,k =
ak
ak−1

Since the αj,k’s are positive, AM-GM inequality can be applied and by virtue of it we are led to(
1

2n

2n∑
j=1

αj,k

)2n

≥

(
2n∏
j=1

αj,k

)

=⇒
(
ak−2

ak−1

)2n

=
ak
ak−1

for each k. As both sides of the inequalities are positive, multiplying them we obtain

2n∏
k=0

(
ak−2

ak−1

)2n

≥
2n∏
k=0

ak
ak−1

But both sides are equal to 1. Therefore all the 2n+1 A.M.-G.M inequalities are equalities implying
that for each k,

α1,k = α2,k = · · · = α2n,k =
ak−2

ak−1

Since n ≥ 2, using Vieta’s relations gives

ak−3

ak−1

=
∑

1≤i<j≤2n

αi,kαj,k =

(
2n

2

)(
ak−2

ak−1

)2

Simplifying leads (
2n

2

)(
ak−2

ak−1

)2

=
ak−3

ak−1

=⇒
(
2n

2

)
(ak−2)

2 = ak−1ak−3

for each k. Multiplying all these equations yields((
2n

2

)2n+1

− 1

)(
2n∏
k=0

ak

)2

= 0

which shows that at least one ak = 0, a contradiction.
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6. Add and Subtract Evaluating the RHS, we see that it becomes 1 for x < 3 and 9 for x > 3.
By means of integration, we get:

|f(x)|+ g(x) =

{
9x+ k0, if x > 3

x+ k1, if x < 3

Obersvation i: f(x) and g(x) can have atmost degree 1 each
Proof: Since f(x) and g(x) are polynomials, they must be continuous functions. The only way for
it to evaluate to the piecewise function on RHS, is if f(x) < 0 ∀x > 3 and f(x) > 0 ∀x > 3, or
vice-versa.
For any arbitrary n ∈ N, n ≥ 2, let an and bn be the coefficients of xn in f and g respectively.
Since, f takes different signs before and after 3, we have an + bn and − an + bn as the coefficients of
xn in |f(x)|+ g(x) (before and after 3, or vice-versa)
Since n ≥ 2, we have an + bn = 0 and −an + bn = 0, since no xn terms are on RHS for n ≥ 2.
Therefore, an = 0, bn = 0.

Since f is linear, and |f(x)| is non-differentiable at 3. We get f has a zero at 3, so f(x) = a(x− 3) as
the only solution.
We take g(x) = bx+ c for the other linear polynomial.
WLOG, assume a > 0. −a(x− 3) will be the only other solution to f(x), since |y| = | − y|.

|a(x− 3)|+ (bx+ c) =

{
a(x− 3) + (bx+ c) = (b+ a)x+ (c− 3a), if x > 3

−a(x− 3) + bx+ c = (b− a)x+ (c+ 3a), if x < 3

Comparing coefficients, we get b+ a = 9, b− a = 1, therefore b = 5, a = 4
We also have, g(0) = b(0) + c = c = 12.
Therefore, the polynomials are g(x) = 5x+ 12 and f(x) = ±4(x− 3).
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