

Mathematics Guild Solutions to Problem Set - 3

Challenge posed on: 08/07/2025

Challenge conquered by: 14/07/2025

1 Overview

• Topics focused: — Algebra

- Polynomials

- Functional Equations

• Challengers: — Raghav Iyengar

V Sriram

- Arun Radhakrishnan

• Difficulty level is as follows:

- Cyan :- Easy to moderate

- Blue :- Moderate to Hard

- Red :- Hard to Very Hard

• Happy solving:)

2 Problems

1. Functional Inequality on Natural Numbers Let $f : \mathbb{N} \to \mathbb{N}$ satisfy

$$2n + 2024 \le f(f(n)) + f(n) \le 2n + 2026 \text{ for every } n \in \mathbb{N}.$$
 (1)

1. Setting up the auxiliary sequences Fix an arbitrary $n \in \mathbb{N}$ and define

$$a_0 = n,$$
 $a_{k+1} = f(a_k)$ $(k \ge 0),$

together with the "error" terms

$$c_k = a_{k+1} - a_k - 675 \qquad (k \ge 0).$$

By construction $a_{k+1} = a_k + 675 + c_k$.

Insert these expressions into (1):

$$a_{k+2} + a_{k+1} = (a_k + 1350 + c_k + c_{k+1}) + (a_k + 675 + c_k) = 2a_k + 2025 + 2c_k + c_{k+1}.$$

Hence

$$2a_k + 2024 \le 2a_k + 2025 + 2c_k + c_{k+1} \le 2a_k + 2026 \Longrightarrow -1 \le 2c_k + c_{k+1} \le 1.$$
 (2)

2. A useful sign-growth dichotomy Rewrite (2) as

$$c_{k+1} \le 1 - 2c_k, \qquad c_{k+1} \ge -1 - 2c_k.$$
 (3)

- If $c_k \ge 1$, then the first inequality in (3) forces $c_{k+1} \le -1$.
- If $c_k \leq -1$, the second inequality in (3) gives $c_{k+1} \geq 1$.

Thus whenever $c_k \neq 0$ the signs of consecutive c-terms alternate and their absolute values never drop below 1.

3. Assuming $c_0 \neq 0$

Case A: $c_0 \ge 1$. We prove by induction that

$$c_{2k} \ge k+1 \qquad (k \ge 0). \tag{4}$$

Base k = 0. $c_0 \ge 1 = 0 + 1$.

Induction step. Assume $c_{2k} \ge k + 1$.

From $2c_{2k} + c_{2k+1} \le 1$ we get $c_{2k+1} \le 1 - 2c_{2k} \le -2k - 1$.

Plugging this into $-1 \le 2c_{2k+1} + c_{2k+2}$ yields $c_{2k+2} \ge -1 - 2c_{2k+1} \ge 4k + 1 \ge k + 2$ for every $k \ge 0$. Hence (4) is established.

With (4) we bound the original sequence. From

$$a_{k+1} = a_k + 675 + c_k, \quad a_{k+2} = a_{k+1} + 675 + c_{k+1}$$

we obtain

$$a_{2k+2} = a_{2k} + 1350 + c_{2k} + c_{2k+1}.$$

Using $c_{2k+1} \leq 1 - 2c_{2k}$ we deduce

$$a_{2k+2} \le a_{2k} + 1351 - c_{2k} \le a_{2k} + 1350 - k$$
 (by (4)). (5)

Iterating (5) gives

$$a_{2k} \le a_0 + \sum_{j=0}^{k-1} (1350 - j) = a_0 + 1350k - \frac{k(k-1)}{2}.$$
 (6)

The quadratic term -k(k-1)/2 dominates the linear one, so (6) becomes negative for sufficiently large k, contradicting $a_{2k} \in \mathbb{N}$. Thus $c_0 \not\geq 1$.

Case B: $c_0 \le -1$. Now $2c_0 + c_1 \ge -1$ implies $c_1 \ge 1$.

Starting the previous argument at index 1 (i.e. with the pair c_1, c_2) again leads to a contradiction.

Therefore $c_0 = 0$.

4. Concluding the form of f Because $c_0 = 0$,

$$a_1 = a_0 + 675 \implies f(n) = n + 675 \qquad (n = a_0).$$

Finally,

$$f(f(n)) + f(n) = (n+1350) + (n+675) = 2n+2025,$$

which indeed lies between 2n + 2024 and 2n + 2026. Hence

$$f(n) = n + 675 \text{ for all } n \in \mathbb{N}$$

and the solution is unique.

2. Too cool to be in GP Let $P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$, where $a_3, a_2, a_1, a_0 \in \mathbb{Z}$.

Assume that the roots of the polynomial form a geometric progression with ratio q, where $|q| \neq 1$ and $q \neq 0$.

Let the roots be a, aq, aq^2 , where $a \in \mathbb{R}$ and irrational.

By Vieta's formulas, the sum of the roots satisfies:

$$a + aq + aq^2 = a(1 + q + q^2) = -\frac{a_2}{a_3}$$

and the sum of the products of the roots taken two at a time is:

$$a \cdot aq + a \cdot aq^2 + aq \cdot aq^2 = a^2q(1+q+q^2) = \frac{a_1}{a_3}$$

Dividing the second equation by the first:

$$\frac{a^2q(1+q+q^2)}{a(1+q+q^2)} = aq = \frac{a_1}{-a_2}$$

Hence,

$$aq = \frac{a_1}{-a_2}$$

which is rational, since $a_1, a_2 \in \mathbb{Z}$ and $a_2 \neq 0$.

But this implies that one of the roots, aq, is rational, contradicting the assumption that all roots are irrational.

Therefore, the roots of a cubic polynomial with integer coefficients cannot be three positive irrational numbers in geometric progression.

3. This is more confusing than Pokemon XYZ Given: $f: R \to R$

$$x(f(x+y) - f(x-y)) - y(f(x+y) + f(x-y)) = 8xy(x^4 - y^4)$$

With, f(1) = 2025. The passkey on the first day of the month.

The key trick in this problem is that: if x and y are independent variables, then x + y and x - y are also independent. That is, it is possible to choose any two real numbers a and b, with x + y = a and x - y = b. So, put a = x + y, b = x - y and solve for f(a) and f(b) where a and b can be varied independent of each other.

First we simplify the equation, grouping the f(x + y) and f(x - y) terms:

$$f(x+y)*(x-y) - f(x-y)*(x+y) = 8xy(x^2+y^2)(x^2-y^2)$$

$$= 8xy(x^2+y^2)(x+y)(x-y)$$

$$= 4xy*(2x^2+2y^2)*(x+y)(x-y)$$

$$= [(x+y)^2 - (x-y)^2]*[(x+y)^2 + (x-y)^2]*(x+y)(x-y)$$

Making the substituion: a = x + y, b = x - y, we get:

$$bf(a) - af(b) = (a^2 + b^2) * (a^2 - b^2) * ab = ab * (a^4 - b^4)$$

Dividing by ab, we get:

$$\frac{f(a)}{a} - \frac{f(b)}{b} = a^4 - b^4 \Rightarrow \frac{f(a)}{a} - a^4 = \frac{f(b)}{b} - b^4 = c$$

for some constant c.

Thus, $f(a) = a * (c + a^4) = a^5 + ca$. Since f(1) = 2025, we get $f(1) = 1 + c = 2025 \Rightarrow c = 2024$. Therefore, $f(x) = x^5 + 2024x$.

4. Even more confusing than Pokemon XYZ Given: $f : \mathbb{R} \to \mathbb{R}$

$$f(xy + f(x)) + f(y) = xf(y) + f(x + y)$$

for all real numbers x and y.

Let P(x, y) be the assertion f(xy + f(x)) + f(x + y) = xf(y) + f(x + y).

 $P(0,0) \implies f(f(0)) + f(0) = 0 + f(0) \implies f(f(0)) = 0$

 $P(0,0), 0 \implies 2f(0) = f(0)^2 \text{ and so } f(0) \in \{0,2\}$

Case i: If f(0) = 2 and so f(2) = f(f(0)) = 0

 $P(x,0) \implies f(f(x)) + 2 = 2x + f(x)$ and so f(x) is injective.

For a rigorous proof: Assume $f(a_1) = f(a_2)$ and put $x = a_1$ and $x = a_2$ in the above formula. It is easily shown that $a_1 = a_2$

Note: This trick is very useful in functional equations - when you have a variable x outside the functions and everything else inside the function calls.

If $x \neq 1$,

$$P(x, \frac{f(x) - x}{1 - x}) \implies f(x * \frac{f(x) - x}{1 - x} + f(x)) + f(\frac{f(x) - x}{1 - x}) = xf(\frac{f(x) - x}{1 - x}) + f(x + \frac{f(x) - x}{1 - x})$$

$$\implies f(\frac{f(x) - x^2}{1 - x}) + f(\frac{f(x) - x}{1 - x}) = xf(\frac{f(x) - x}{1 - x}) + f(\frac{f(x) - x^2}{1 - x})$$

$$\implies f(\frac{f(x) - x}{1 - x}) = xf(\frac{f(x) - x}{1 - x}) \implies f(\frac{f(x) - x}{1 - x}) = 0$$

We already know, 0 = f(2) and so, by injectivity, $\frac{f(x)-x}{1-x} = 2$.

And so $f(x) = 2 - x \ \forall x \neq 1$.

For x = 1, we can show:

$$P(1,x) \implies f(x+f(1)) = f(1+x)$$

Again, via injectivity, $x + f(1) = x + 1 \implies f(1) = 1 = 2 - x$.

And so $S1: f(x) = 2 - x \quad \forall x$, which indeed fits.

Case ii: If f(0) = 0

If f(a) = f(b) = c, subtracting P(a, b) from P(b, a): we get c(a - b) = 0 and so f(a) = f(b) = 0 or a = b. Equation (i).

 $P(x,0) \implies f(f(x)) = f(x)$ and so f(x) = 0 or f(x) = x using eqn (i).

If f(1) = 0, $P(1,x) \implies f(x) = f(1+x)$.

And so $S2: f(x) = 0 \quad \forall x$, which indeed fits.

If f(1) = 1: claim that $f(x) = x \ \forall x$.

Suppose not, $\exists k \neq 0, f(k) \neq k \implies f(k) = 0.$

Then $P(1-k,k) \implies f(k-k^2+f(1-k)) = 1 = f(1)$.

 $f(k-k^2+f(1-k))=f(1)=1\neq 0 \implies k-k^2+f(1-k)=1$, from eqn (i).

If f(1-k) = 0, we get $k - k^2 = 1 \implies \Leftarrow$.

If f(1-k) = 1 - k, we get $k - k^2 + 1 - k = 1 \implies \Leftarrow$, since $k \neq 0$.

Therefore, there is no $k \neq 0$ such that f(k) = 0.

This means f(x) = x for all $x \neq 0$.

Since f(0) = 0, we have f(x) = x for all x.

No such x and $S3: f(x) = x \quad \forall x$, which indeed fits.

5. Be real. Given: $a_0, a_1, \ldots, a_{100}$ are positive real numbers

$$P_k(x) = a_{100+k}x^{100} + 100a_{99+k}x^{99} + a_{98+k}x^{98} + a_{97+k}x^{97} + \dots + a_{2+k}x^2 + a_{1+k}x + a_k$$

where the indices are taken modulo 101

Let n = 50. For the sake of contradiction, assume that each of these polynomials has all real roots; these roots must be negative. Let

$$-\alpha_{1,k}, -\alpha_{2,k}, \ldots, -\alpha_{2n,k}$$

be the roots of the polynomial

$$a_{2n+k}x^{2n} + 2na_{2n-1+k}x^{2n-1} + a_{2n-2+k}x^{2n-2} + a_{2n-3+k}x^{2n-3} + \dots + a_{2+k}x^2 + a_{1+k}x + a_k$$

Indices are taken modulo 2n + 1, so $a_{2n+k} = a_{k-1}$ and $a_{2n-1+k} = a_{k-2}$. Then

$$\sum_{j=1}^{2n} \alpha_{j,k} = 2n \cdot \left(\frac{a_{k-2}}{a_{k-1}}\right); \quad \prod_{j=1}^{2n} \alpha_{j,k} = \frac{a_k}{a_{k-1}}$$

Since the $\alpha_{j,k}$'s are positive, AM-GM inequality can be applied and by virtue of it we are led to

$$\left(\frac{1}{2n}\sum_{j=1}^{2n}\alpha_{j,k}\right)^{2n} \ge \left(\prod_{j=1}^{2n}\alpha_{j,k}\right)$$

$$\implies \left(\frac{a_{k-2}}{a_{k-1}}\right)^{2n} = \frac{a_k}{a_{k-1}}$$

for each k. As both sides of the inequalities are positive, multiplying them we obtain

$$\prod_{k=0}^{2n} \left(\frac{a_{k-2}}{a_{k-1}} \right)^{2n} \ge \prod_{k=0}^{2n} \frac{a_k}{a_{k-1}}$$

But both sides are equal to 1. Therefore all the 2n+1 A.M.-G.M inequalities are equalities implying that for each k,

$$\alpha_{1,k} = \alpha_{2,k} = \dots = \alpha_{2n,k} = \frac{a_{k-2}}{a_{k-1}}$$

Since $n \geq 2$, using Vieta's relations gives

$$\frac{a_{k-3}}{a_{k-1}} = \sum_{1 \le i < j \le 2n} \alpha_{i,k} \alpha_{j,k} = \binom{2n}{2} \left(\frac{a_{k-2}}{a_{k-1}}\right)^2$$

Simplifying leads

$$\binom{2n}{2} \left(\frac{a_{k-2}}{a_{k-1}}\right)^2 = \frac{a_{k-3}}{a_{k-1}} \implies \binom{2n}{2} (a_{k-2})^2 = a_{k-1} a_{k-3}$$

for each k. Multiplying all these equations yields

$$\left(\binom{2n}{2}^{2n+1} - 1 \right) \left(\prod_{k=0}^{2n} a_k \right)^2 = 0$$

which shows that at least one $a_k = 0$, a contradiction.

6. Add and Subtract Evaluating the RHS, we see that it becomes 1 for x < 3 and 9 for x > 3. By means of integration, we get:

$$|f(x)| + g(x) = \begin{cases} 9x + k_0, & \text{if } x > 3\\ x + k_1, & \text{if } x < 3 \end{cases}$$

Obersvation i: f(x) and g(x) can have at most degree 1 each

Proof: Since f(x) and g(x) are polynomials, they must be continuous functions. The only way for it to evaluate to the piecewise function on RHS, is if $f(x) < 0 \ \forall x > 3$ and $f(x) > 0 \ \forall x > 3$, or vice-versa.

For any arbitrary $n \in \mathbb{N}$, $n \geq 2$, let a_n and b_n be the coefficients of x^n in f and g respectively.

Since, f takes different signs before and after 3, we have $a_n + b_n$ and $-a_n + b_n$ as the coefficients of x^n in |f(x)| + g(x) (before and after 3, or vice-versa)

Since $n \ge 2$, we have $a_n + b_n = 0$ and $-a_n + b_n = 0$, since no x^n terms are on RHS for $n \ge 2$. Therefore, $a_n = 0, b_n = 0$.

Since f is linear, and |f(x)| is non-differentiable at 3. We get f has a zero at 3, so f(x) = a(x-3) as the only solution.

We take g(x) = bx + c for the other linear polynomial.

WLOG, assume a > 0. -a(x-3) will be the only other solution to f(x), since |y| = |-y|.

$$|a(x-3)| + (bx+c) = \begin{cases} a(x-3) + (bx+c) = (b+a)x + (c-3a), & \text{if } x > 3\\ -a(x-3) + bx + c = (b-a)x + (c+3a), & \text{if } x < 3 \end{cases}$$

Comparing coefficients, we get b + a = 9, b - a = 1, therefore b = 5, a = 4

We also have, q(0) = b(0) + c = c = 12.

Therefore, the polynomials are g(x) = 5x + 12 and $f(x) = \pm 4(x - 3)$.